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We have calculated the exchange and correlation corrections to the free energy (F„,) and the
chemical potential (p„,) of an electron system at arbitrary degeneracies and temperatures. These are
needed for density-functional, average-atom-type calculations of properties of plasmas and liquid

metals. The problem of inverting the parametric relation between p„and the density correction n„,
is considered. We present easy-to-use analytic fits to F„, and p„, as functions of the temperature

and density. We also consider the effect of a linearly responding ion background on the electron

chemical potential as well as the ion chemical potential, as these are needed in calculations of ion-

electron systems at arbitrary degeneracies and densities.

I. INTRODUCTION

The objective of this paper is to provide some of the
basic information on the exchange and correlation poten-
tials and thermodynamic functions of an electron f1uid,
for densities and temperatures of the sort encountered in
the study of strongly coupled plasmas and liquid metals.

Many problems in plasmas and liquid metals can be re-
duced to a theory' of an inhomogeneous electron fluid
coupled to an ion subsystem which can be described by a
Gibbs-Boltzmann formulation. In the simpler ap-
proaches ' the ionic system is replaced by a uniform
background or taken to be in its zero-temperature config-
uration defined by Wigner cells. The electron subsystem
is then treated using an effective single-particle
Schrodinger equation or Thomas-Fermi-type equation.
These equations contain an effective one-electron potential
V, (r) made up of the usual one-body terms, the self-
consistent Hartree potential, and also an effective poten-
tial V„,(r) which simulates the effects of exchange and
correlation arising from the rest of the electrons. The
rigorous formulation of this approach is found in
density-functional theory (DFT) which specifies V„,(r)
to be a unique but unknown functional of the one-electron
distribution n (r). Similarly, exchange-correlation correc-
tions to other thermodynamic functions can be intro-
duced. As the exact functionals are unknown, they are
usually evaluated in the local density approximation
(LDA) where, for example, the exchange and correlation
correction to the free energy F„, is taken to be

F„,= J n(r)f„",[n(r)]dr, (1.1)

where f„",[n(r)] is the exchange-correlation correction per
'particle for the homogeneous electron system at a density
n =n(r). Thus we see that the properties of the homo-
geneous electron system are of basic importance in the
study of inhomogeneous systems.

The exchange-correlation potential V„, at any tempera-
ture is found to be identical with p„ for uniform sys-

tems. The finite-temperature density-functional theory

uses the grand canonical ensemble. For a given tempera-

ture T, volume V, and chemical potential p, the thermo-

dynamic potential Q is a minimum for the correct density
distribution n (r). In the homogeneous problem at density

n we have

0( T, Vp) =Op+A„,(T, Vp),
where Qo is the value for the system without interactions.
Once Q„,(T, V,JM) is obtained, and then only, can we elim-

inate p in favor of the density n via the parametric rela-

tion

1V =nV=- an (1.3)
TV

If this inversion is not carried out and if fl„,(T, V,p) is
simply treated as Q„,(T, V, n), where p has been eliminat-
ed using zero-order theory, incorrect thermodynamic re-
sults will be obtained. Thus Gupta and Rajagopal have
reported tabulations of 0, for the ring sum, viz. , 0„
which are negative in sign and incorrect in magnitude al-

though, as is well known, it should in the classical limit
lead to the positive Debye-Hiickel value of 0, /V
= —P, =e nA, /6, where A, is the Debye screening con-
stant. From the detailed discussion of' their calculations
given by Gupta and Rajagopal [see Eqs. (104) and (105)
of Ref. 9], it is clear that these authors' treat Q(T, V,p)
as if it were Q(T,p, ,n), without going through the relation
(1.3). Panat and Amritkar" have unfortunately followed

the work of Gupta and Rajagopal and reported tabula-

tions of Q, which are really the Helmholtz free energy as

in the case of Gupta and Rajagopal. In view of these con-
fusions found in the recent literature, a reexamination of
the problem is necessary.

In Sec. II we will briefly state the necessary theory for
the calculation of F„, and p„„where the correlations will
be treated via the random-phase approximation (RPA),
also called the ring sum (or Montroll-Ward graphs). The
passage from the grand canonical ensemble variable p to
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the canonical ensemble variables n, i.e., the density, will

be restated. In Sec. III we present results for f„,=F„,/n
and p„, for a range of densities and temperatures in a con-
venient parametrized form. Here we make contact with
some of the work of the East German group' ' and the
earlier work of Pokrant' where alternative methods and
approximations have been used. Finally, in Sec. IV we
consider the effect of a responding ion background to
linearly screen the electron-electron interactions and
present results for these.

II. REVIEW OF THE THEORY

A detai. led discussion of the theory, both from the point
of view of the self-energy and the grand potential
n(T, V,p) is given in Ref. 7. Only a brief review is given
here for comp1eteness and to define the notation.

We define

screened potential.
Thus we write

n=np(p)+n. ".'(p)+( ), (2.6)

1 BQ
n ———

V Bp
(2.7)

noting that the physical density n is the density inclusive
of corrections, viz. ,

where the ellipsis represents higher order in u.
As seen from the work of Mermin (see Ref. 2), the

exchange-correlation potential Vxc is the functional
derivative of 0„,with respect to the density. Hence, and
for other purposes, it is desirable to eliminate p in favor
of the density n, thus passing from the grand canonical
ensemble to the canonical ensemble. This is achieved by
the relation

n( T, V,p)= —Tlnz

=Qp(T, V p)+n„,(T, Vp), (2.1)

n(p, ) =n'(p, )+n„,(p),
while the inversion is of the form

(2.8)

where Z is the partition function and T the temperature
in energy units. Qp(T, V,p, ) characterizes the noninteract-
ing system. Its chemical potential p =go is obtained from
the equation (atomic units)

n =2+ nk, nk =1/(1+e ' ' ),
where

(2.2)

n =IV/V, P=1/T, ek =k l2 .

This implicit relation for po can be written as

n =(W2/1r )P I1g2(Ppp)

and then, using the resulting po, we have

np/V= P= 2T —g ln(1—+.e "
)

=(v 2/n )13
'

—,'I3g2(Ppp) .

Here I,(z) is the Fermi integral defined by

(2.3)

(2.4)

' 1/3
3

4mn
2EF——kF=, a==2= 1

c,2r2

' 1/3
4

9~

(2.5)

I (z)= J „, , v) ——,
'

e '+1
For future use we also define the electron sphere radius

r, and the zero-temperature Fermi energy Er (atomic
units) as

p(n)=p (n)+p„,(n) . (2.9)

Now, given an 0„, the inversion may be performed nu-
merically to obtain p„,(n), or alternatively, a linearized
version of (2.9) may be considered, as in Ref. 7 [see Eqs.
(4.16)—(4.18)]. The two procedures will not in general
lead to equivalent results. We believe that the linearized
inversion is more in keeping with our evaluation of 0„,to
first order in the RPA-screened potential. Thus

(&)
P =Pa+Axe .

po is determined from a numerical inversion of

I 1/2(l pp)
3n

7T2

(2.10)

Then, expanding Q(p) we have, as in Kohn and Lut-
tinger' (see also Stolzmann and Kraeft' ),

(an" 'lap)„„,
(a'n, lap')„,

(an„",'lap, )„„
(an /ap)„„

These results lead to the form

n„,(n, T)=n„,(Pp, T) VnP„", +( )—,

(2.11)

where the ellipsis represents higher-order terms. From
the thermodynamic relation

0= —PV=F —n Vp
Interacting system. When we switch on the interac-

tions, the change in n, denoted by n„,( T, V,p ), can be cal-
culated by diagrammatic perturbation theory. 0„,consists
of 0„, which is the first-order term and is linear in the
bare potential. 0, is the correlation term which by defini-
tion includes all other terms. If we consider the perturba-
tion series as an expansion in powers of the screened
Coulomb potential u, then the procedure used here may
be regarded as a first-order calculation in the RPA-

we have

F„,(n, T)=n„,(PO, T)+( ),
where the ellipsis represents higher terms,

anxc(po~ T)/apo""'"' '=
an( „T)/a„, +

which is consistent with

(2.12)

(2.13)



30 EXCHANGE AND CORRELATION POTENTIALS FOR. . . 2621

f [I &i2(x)] dx,
2m'P'

(2.14)

where

4mg=pp, u-„

The ring-sum contribution is

Q, =Q, (p, T)/V

, f dq[ln[l un'( qv—)]
2P (2~)

+ue~'(q v„)], (2.15)

where v„=2nn/p and m. .(q, v„) is the Lindhard function.
For computational purposes we write this as

Q„(iJ„T)/V= p ~ g f Q dg[ln[1 —X„(g)]
n

+X„(Q)l,

(2.16)

5F„,(n, T)
p„,(n, T)=

5n

Equations (2.12) and (2.13) are the equations used in
this work. Equation (2.13) also defines the exchange-
correlation potential V„,=p„",' of DFT. The present
analysis also shows that the 0, tabulated by Gupta and
Rajagopal is really the ring-sum correction to the
Helmholtz free energy F, . Also, their V„„which is also a
calculation to first order in the screened potential, would
prove to be the required p„,.

In the numerical calculation of 0„, it is more con-
venient to deal with the part linear in the bare potential,
viz. , 0„,separately from 0, which is just the ring sum in
our approximation, as follows:

Q„(p, T)/V= —g gu„nenkk —q
q k

correlation energy from the Ceperley-Alder Monte Carlo
calculations is 13%%uo, occurring at r, =15. At r, =1 and
100 they give deviations of 6%%uo and S%%uo.

At very large r„one may consider the formation of a
Wigner lattice. ' In the simplest approximation the elec-
trons can be considered to define a set of harmonic oscil-
lators with vibration frequency co~/v 3, where cod is the
plasma frequency. Thus, at finite temperatures, this pic-
ture is unlikely to hold unless

T «cop ——(3/r, )' .

Also, for large r, since E~ ~1/r, we note that the elec-
tron system will rapidly approach the classical limit for
which many results are available.

III. RESULTS FOR THE HOMOGENEOUS
ELECTRON SYSTEM

In this section we present our results in the form of
convenient analytic fits and compare them with existing
calculations. It is convenient to parametrize f„=(F„/N)
and p„(i.e., V„) separately from f, =(F, /N) and p,, (i.e.,
V, ), and then form f„, and p„,. This is motivated by the
fact that f„and p„, being linear in the density, can be
represented by a simple form independent of r, by a suit-
able choice of units, and also because f„and f, were cal-
culated by two separate formulas for Q„and Q, [Eqs.
(2.14) and (2.16)] although their sum formally represents
the first-order dynamically screened exchange graph free
of logarithmic divergencies at T—+0 limit.

The calculation of f, and p, needs some care to ensure
that the Q integration and the sum over n given in Eq.
(2.16) have converged. For n & 20 the sum was explicitly
evaluated. For 21 & n ( 100 a Pade approximant to

f Q dg[ln(1 —X„)+X„]based on the values for n &21
was used. For the range n &100 an integral was per-
formed with an approximation of the form
F„4Iiy2(ri)g /(Q +ag +4cv ).

A strong test of the quality of the numerical calculation
can be obtained by noting that ' the logarithmic diver-
gence in Q„ for T +0 (i.e., g~ ao —) is exactly canceled by
a similar term in Q„so that 0„, is completely well
behaved. Horowitz and Thieberger give

X„(Q)=—

with

3 F„(g,g), Q =qv'P/2 2

Qx/V= — 2g — lnq+ . +O(l/g )
2~ P

xdx
1

n m +Q (Q/2+x)
n'rr +g'(Q/2 —x)'

These equations provide an approximation to the per-
turbation series for 0 to first order in the screened
Coulomb potential u. The range of validity of such an
approximation is unknown but we believe that it captures
the most important part of the correlation corrections even
for large r, . To qualify this more carefully, we note from
the study of Vosko, Wilk, and Nusair'9 (their Table 5)
that, for T=O, the maximum deviation of the RPA

where the ellipsis represents a constant.
Hence, by adding lnril(6rrP ) to Q, /V we should find

that the result is proportional to T for small T. This
was found to hold very accurately for sufficiently large q,
(e.g., rt &10 for @=0.5 a.u.) in all the cases examined.
Calculations were carried out for r, =0.1 to r, =5 and the
results have been parametrized as follows.

A. Exchange contributions

We give the zero-temperature and high-temperature
limits, viz. ,
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kp
p„(0)= — = 0—6.109/r, (3.1)

Wilk, and Nusair' have given parametrization for
p, (r„O) and e, (r„O) for r, up to 100. Thus

in a.u. Using the letter h to imply the high-temperature
limit,

p„(&)=p„(0)(2/3r),

where t=T/EF. The following forms were found to
reproduce the numerical data for 0.1& T/EF &12 quite
accurately:

E,(r„O)

x 2 2b, 1 bxc ln(x —xo )
ln + tan

X(x) Q 2x +b X(xo) X(x)

2(b+2xo), Q+ tan
2x+G

f„(r,r) /p„(0)

0.75+3.04 63t —0.092270t +1.70350t
1+8.31051t +5.1105t

where

x=~r, , X(x)=x +bx+c, Q=(4c b)'/—

with

(3.5)

and

X tanh(1/t) (3.2) xp = —0.409 286 b = 13.0720

c =42.7198, 2 =0.031 907

p„(r,r)/p„(0)

1.0+2.834 31t —0.215 120t +5.275 86t

1+3.943 09t +7.91379t"

y tanh(1/r) . (3.3)

Note that we have used p„(0) as the unit of energy in
both (3.2) and (3.3). Although p„(r, t) can be obtained
from (3.2) by differentiation, the independent parametri-
zation given in (3.3) is more convenient.

Note that these parametrizations also provide a repre-
sentation for Q„and the pressure p„(= —0„/V) via the'

standard thermodynamic relations

(3.4)

The analytic forms given by Eqs. (3.2) and (3.3) deviate
from the original tables by not more than 0 5%
throughout the range of t considered (see Table I).

in atomic units for RPA. The case including correlation
beyond RPA is given as xp ———0. 10498, b=3.72744,
c=12.9352, with the same value of A as before. The
chemical potential is obtained from

1+bix
Pc =&c

1+bix +box +b3x
(3.6)

f (r„O)=C (1+y')ln(1+1/y)+ ——y'—

where, for RPA, b
&

——2.749 273, b2 ——0.771 037, and
b3 ——0.057193. However, for 0&r, &6 we can use the
simpler form (for several parametrizations see Mac-
Donald, Dharma-wardana, and Geldart )

p, ( r„O)=C ln( 1+ 1/y),
(3.7)

B. Ring contributions

At the zero-temperature limit, f, (r„O) becomes identi-
cal with the energy per particle, viz. , e, (r„0) Vosko, .

C=0.02545, y=r, /19

for the correlation corrections in atomic units.

TABLE I. f„(t) and p, (r) are the first-order exchange contributions to the free energy per particle and the chemical potential.
r = T/Er, p„(0)=0.610 89/r, (a.u. ). The ring-sum contributions to f, (r, t) and p, (r, t) at r, =1 a.u. are also given, together with the

values calculated from the analytic fitting formulas.

t =T/EF 0.1100 0.4973 0.9887 1.501 2.361 4.462 8.590 11.96

F (t)/8 (0)
Eq (3 2)

0.7106
0.7145

0.4587
0,4571

0.2873
0.2880

0.2031
0.2034

0.1349
0.1347

0.0733
0.0732

0.0385
0.0385

0.0278
0.0277

p (t)/p (0)
Eq. (3.3)

'0.9899
0.9866

0.7812
0.7835

0.5331
0.5310

0.3888
0.3891

0.2633
0.2646

0.1454
0.1459

0.0769
0.0769

0.0555
0.0555

f,(r)/p„(0)
Eqs. (3.9)
and (3.10)

0.1663
0.1657

0.3474
0.3482

0.4042
'-.0.4059

0.3984
0.3979

0.3649
0.3658

0.2968
0.2980

0.2267
0.2264

0.1955
0.1947

p, (t) /p„(0)
Eqs. (3.9)—
(3.11)

0.1524
0.1511

0.3272
0.3248

0.4685
0.4688

0.5060
0.5056

0.4952
0.4955

0.4236
0.4237

0.3325
0.3303

0.2888
0.2863
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=(4m.n/T)'~

Hence in the Debye-Hiickel limit,

p, DH
———0.638 168(«, )

in a.u.
The numerical results for 0.1(r, g6 and 0. 1&t &12

were found to be accurately representable by the following
form (atomic units):

P, (r, t) =P, (r„O)(1+c ~t+cqt
'~ )e

+P, (r„h)e (3.9)

where, when P, (r, t) =f,(r„t) we have f, (r„O) as given by
Eqs. (3.7) or (3.5) and

f, (r„h)= —0.425 437(t /r, )
'i tanh(1/r) . (3.10)

Here ( r„h) implies the high-temperature representation

10.900
1+0.004 72r,

39.5422 —52.2381r,'"+8.485 54r,'"
1+17.0999r,'

3.888 60

1+0.133620r,'

c =0.122285+0.254 281r,'

When P, (r„t)=p,,(r„t) we have p, (r„O) as given by (3.7)
and (3.6) and

The classical-limit Iesults at high temperatures
(DeWittP also Ref. 12) have the form (atomic units)

x~DT '"-+
32

(3.8)

analytic forms of f„, and p„, at the high-T and low T-
limits. Their form has not been optimized by fitting to
numerical calculations but is supported by having the
correct limiting behaviors at high and low 1". However,
numerical tests at r, =0.5 using their form for RPA gave
errors in excess of 25% for several temperatures.

It is of interest to compare our results with those of
Pokrant" who has used completely different methods and
given tabulations (r, =0.5—3.39) for p„,/n and f„„and
hence p„,=f„,+p„,/n Po. krant proceeds by evaluating
the Slater sum using a finite temperature variational prin-
ciple, together with a number of approximations typical
of the statistical theory of fluids. His results for T=0 are
significantly different from those favored by Vosko et al.
in their reevaluation of the available data inclusive of
correlations beyond RPA. Figure 1 provides a compar-
ison of our RPA data for p and those of Pokrant which
is presumed to contain correlation corrections beyond
RPA.

In this section we examine the effect of ion-screening
effects on V„, (=p„,) and f„, as this is of importance in
density-functional calculations' of two-component (i.e.,
ions and electrons) systems. In this case we have to con-
sider two correlat1on potentials, v1z.~ p~ and p~, where the
superscripts e and i denote electrons and ions.

Instead of (2.6) and (2.11) we have

Q(p', p', T) =Qo(p„T)+Qo(p', T)+Q„(p,', T)

+Q, (p', p', T)

and writing s =i or e we have

(4.2)

(4.3)

p, (r„h)= —0.638168(tlr, )' tanh(l/&) (3.11) f.5

9.554 32
1+0.066 66r,

3.579 12—5.99065r, "+1.29722'
1+1.61126r,

4.802 17

1+0.423 387r,

c4 ——0.293 35+0.322 565~r, .

IBustrative results from these fitting formulas are given
for the case r, =1 in Table I. The fitting formulas are
sufficiently accurate for most calculations, but the origi-
nal tabulations are available from the authors on request.

Richert and Ebeling' have recently proposed a Pade
approximation form for f„, and p„, by making use of the

FIG. 1. Plots of p„,(r„T)/p, „(0) for r, =0.5, 3.39, and 5.0.
The triangles are from Pokrant's variational calculations (Ref.
16).
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TABLE II. Comparison of calculations for a hydrogen plasma (z=1,M=1848) at T=22.8 eV.
Ionic contributions to the ring sum are calculated using (a) the full Dawson function D(Q/2V M ), (b)

the small-Q limit Q /V M.

—4.0
—3.0
—2.0

1.0
0.0
1.0
2.0
4.0
7.0

10.0

r/EF

11.995
6.183
3.235
1.740
0.989
0.611
0.414
0.237
0.140
0.099

rs

5.124
3.685
2.665
1.955
1.474
1.158
0.953
0.722
0.555
0.467

Fc /n

0.1459
0.2308
0.3542
0.5165
0.7012
0.8843
1.0548
1.3673
1.7962
2.1904

(a)

Pc

0.1037
0.1579
0.2255
0.2892
0.3199
0.3091
0.2794
0.2332
0.2085
0.2012

—Pc

0.1108
0.1776
0.2792
0.4252
0.6182
0.8470
1.0927
1.5805
2.2487
2.8461

—F, /n

0.1460
0.2310
0.3548
0.5178
0.7043
0.8908
1.0663
1.3936
1.8529
2.2847

0.1037
0.1579
0.2256
0.2892
0.3200
0.3091
0.2794
0.2333
0.2087
0.2014

0.1110
0.1780
0.2803
0.4279
0.6244
0.8598
1.1155
1.6323
2.3605
3.0318

m'(q, vo) = — e ~" D —v'p/2M1 I q

Pq
(4.4)

In this paper we evaluate Q, (p', p', T) in the ring-sum
(RPA) approximation. The new value of V,

' (i.e., p', ) will

depend on the electron density n and the ion density
p=n/z, where z is the effective positive charge on the
ions. The ion-correlation potential p,'(n, p, T) evaluated in
this manner would NOT be as good as the procedure
based on the hypernetted-chain (HNC) integral equation
given in Ref. 1 where nonlinear effects are also taken into
account. However, p', (n,p, T), i.e., the correlation poten-
tial for electrons, will be superior to the form used in Ref.
1 since p', (n,P, T) includes (in linear response) the effects
of the term denoted by F,"(n,p) which was neglected at
that time.

Since the ions are classical at all temperatures of in-
terest and much heavier than electrons, the RPA-response
function n'(q, v„) contributes only for the n =0 term. We
have

To study the effect of softening of the ion background
we define the ion-response factor g=(A, 'D/A, D), where A,D
is the corresponding Debye screening constant. The rigid
ion background corresponds to /=0, while a responding
proton gas corresponds to ~~=1. The results of this calcu-
lation which exploits the small-Q limit of the Dawson
function are shown in Fig. 2.

In Table III we give results for f„p', , and p,' for a hy-
drogen plasma at r, =1 with the ion-response factor
/=0. 5 and 1.0, together with f, and p,'for the system
with a rigid-ionic background ((=0). Figure 3 displays

p,'for other values of I", and as a function of temperature.
Note that the effect of ion correlations is more important
at small r, and near the region where p changes sign
( T/EF =1.0).

We have not attempted to parametrize p,'(n, (,T) or
equivalently the p', (n,p, T) data as was done for the case
of the uniform background. Tabulations are available
from the authors if needed. However, a convenient ap-

where M is the ion mass and D(x) is the Dawson func-

tion defined so as to have the limit D(x~0) =2x. Thus,
when linear ion-screening effects are included in RPA in
Eq. (2.16), we replace the n =0 term by

0. 0

—0. 1

T = 22 8 eV

Xo(Q) =— 1
Fo(Q il') —0. 2

(3

0.5

+~nM z e"D
2 M

' 3/2

v 2(n/z), rl'=Pp' .
M

(4.5) -o.a—

—0. 4

The nonzero-frequency contributions (n&0) come only
from the electrons. The small-Q limit of (D Q2/~M)
corresponds to the Debye-Hiickel screening function. In
Table II we present results for a typical temperature
( T=22.8 eV) of a hydrogen plasma (z =1, M=1848) to
examine the effect of Q dispersion in the ion-response
function. Q dispersion is found to be relatively unimpor-
tant for p,', but it has a significant effect on p,'.

-5.0 0.0 5.0 10.0

FIG. 2. Variation of p,' (a.u. ) for an electron-ion plasma at
T=22. 8 eV for different values of the ion-response factor
g=(Ao/Ao), calculated using the small-Q limit of the Dawson
function. Here g, =Ppo.
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t—Pc

'
n ', and pc' in atomic units for a hydrogen plasma at r, = Ife~ pe~ p

=0 0.5, and 1, with g=(Annith the ion-response factor (=0,w1 e
e g 0d background for which pc

p

0.110
0.4973
0.9887
1.5009
2.3607
3.2348
4.4623
6.1826
8.5899

11.955

0.0

0.1016
0.2122
0.2469
0.2434
0.2229
0.2030
0.1813
0.1595
0.1385
0.1194

0.6078
0.5481
0.5246
0.4860
0.4285
0.3839
0.3392
0.2964
0,2564
0.2205

1.0

1.4007
0,9965
0.8746
0.7852
0.6779
0.6019
0.5283
0.4596
0.3965
0.3406

0.0

0.0931
0.1999
0.2862
0.3091
0,3025
0,2838
0.2588
0.2312
0.2031
0.1764

0.1279
0.2613
0.3561
0.3797
0.3696
0.3463
0.3156
0.2817
0.2475
0.2153

0.1438
0.3032
0.4086
0.4346
0.4231
0,3969
0.3621
0.3234
0.2843
0.2476

0.5

0.3363
0.1985
0.1582
0.1364
0.1144
0.1003
0.0872
0,0754
0.0648
0.0556

1.0

1.8012
0.9931
0.7639
0.6486
0.5381
0.4692
0.4064
0.3501
0.3003
0.2572

1 tic form which describes the effect of theprox1mate analyt1c form w 1c

responding 1on backgrou p,
the fact that (i) only the n =0 term in e

1 ed, (ii) the Q dispersion in thequenCy SUIH fOI Qq 1S 1nvO VC

Dawson fUnCt1onn is not too important or p, .
1n the r1ng sum and%'c separate out the n =0 term I t e ring

wr1tc

Q (p', p,
' T) =Q (n~O)+Q„(n =0)

= Q( n& 0) +Qt( n=0)

+[Q,(n =0) Q„(n—=0)j .e (4.6)

' n =0) is the static term in the electron-gas rang-

e ri id uniform ionic background.sum calculation with the rig1 uni orm
'

Hence we rewrite (4.6) as

(4.7)Qr(p tp~ = r
' T)=Q'(p' T)+ b,Q„(n =0),

Q'( ' T) is the total electron-gas
'

gr1n sUm wh11cWhCI'C p P ~

to the n =0 term arisingb,Q„(n =0) is the correction to e n =

T 3 3
b, F (n =O, n,p, T)= — (Az —k, ),C (4.10)

v'2TI rg2(Pp—o)

recnin . %C evaluatef the presence of ion screen' g.roxn e
1mat1on as follows:bQ„(n =0) in the q~O approximat'

AQ„(n =0)=Q„(n =O,p', p') —Q'„(n =,p'n — =„—,', ' — '=0
(4.8)

2
2 2

p
~ ln 1+Q, (n =O,p, ',p')= n

2
A,

2

+ — dq . (4.9)Q'(n =O,p')=
2 I 1n 1+ — q

is the total (electron plus ion) screenmg constant,HerekT1st e oa
or thc c1cctI'ons only.while A,, is the screening constant or t

Doin tIle integra ionsh
' t tions in (4.8) and eliminating the p,

variable in favor o t e ensi y,var1 I h d 1t wc have& 1n an obvious no-
tation,

0, 8

slncc

0.2

0.0

bp,'(n =O, n,p, T)= ~,(n =O, n, p
Pl

(A, TA, 'z —A,,X,') .
4m

(4.11)

i.e, ', ) for /=1 (so1id curves) at r, =0.5 and
=0 are also g1ven5.0. The data for a rigid-ion background ~=

(dashed curves) for r, =0.5 and 5.ase,— 5.0 (atomic units). T) .P~ R,P~, , T)=p'(n T)+hp,'(n =O,n,P, (4.12)

(4.10) can be easily evaluated since it involves

respect to the dens1ty n

total '(n, , T) can be(4.11)]. Once hp', is calculated, the total p, n,p, ca
written as
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p', (n, T) needed here may be calculated from the
parametrization given in Eq. (3.10). Hence p,'(n, g, T)
may be approximately evaluated by this procedure which
is computationally quite straightforward. The same cal-
culation can be adopted for f, via Eq. (4.10).

V. CONCLUSIONS

correlation corrections to the ion chemical potential (p, ),
it is not recommended that they be used in strong cou-
pling situations since the procedure given in Ref. 1, based
on the HNC equation, is superior to the present (linear-
response) approach. By contrast, p,'(n, p, T) presented
here will be very useful in future DFT calculations of sys-
tems with electrons and ions.

%'e have presented convenient and adequately accurate
parametrizations of the exchange and correlation correc-
tions to the free energy and the chemical potential needed
in density-functional calculations of strongly coupled
electron-ion systems at arbitrary degeneracies. In addition
to the detailed calculation, a simple method of calculating
the properties of electron-ion systems by an approxima-
tion to the zero-frequency term in the expression for the
ring sum is also presented. Although we have presented
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