Exchange and correlation potentials for electron-ion systems at finite temperatures

François Perrot

Centre d'Etudes de Limeil-Valenton, BP27, 94190 Villeneuve St. Georges, France

M. W. C. Dharma-wardana

Division of Microstructural Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6

(Received 29 May 1984)

We have calculated the exchange and correlation corrections to the free energy (F_{xc}) and the chemical potential (μ_{xc}) of an electron system at arbitrary degeneracies and temperatures. These are needed for density-functional, average-atom-type calculations of properties of plasmas and liquid metals. The problem of inverting the parametric relation between μ_{xc} and the density correction n_{xc} is considered. We present easy-to-use analytic fits to F_{xc} and μ_{xc} as functions of the temperature and density. We also consider the effect of a linearly responding ion background on the electron chemical potential as well as the ion chemical potential, as these are needed in calculations of ion-electron systems at arbitrary degeneracies and densities.

I. INTRODUCTION

The objective of this paper is to provide some of the basic information on the exchange and correlation potentials and thermodynamic functions of an electron fluid, for densities and temperatures of the sort encountered in the study of strongly coupled plasmas and liquid metals.

Many problems in plasmas and liquid metals can be reduced to a theory¹ of an inhomogeneous electron fluid² coupled to an ion subsystem which can be described by a Gibbs-Boltzmann formulation. In the simpler approaches^{3,4} the ionic system is replaced by a uniform background⁵ or taken to be in its zero-temperature configuration defined by Wigner cells.⁶ The electron subsystem is then treated using an effective single-particle Schrödinger equation or Thomas-Fermi-type equation. These equations contain an effective one-electron potential $V_e(r)$ made up of the usual one-body terms, the selfconsistent Hartree potential, and also an effective potential $V_{xc}(r)$ which simulates the effects of exchange and correlation arising from the rest of the electrons. The rigorous formulation of this approach is found in density-functional theory² (DFT) which specifies $V_{xc}(r)$ to be a unique but unknown functional of the one-electron distribution n(r). Similarly, exchange-correlation corrections to other thermodynamic functions can be introduced. As the exact functionals are unknown, they are usually evaluated in the local density approximation (LDA) where, for example, the exchange and correlation correction to the free energy $F_{\rm xc}$ is taken to be

$$F_{\rm xc} = \int n(r) f_{\rm xc}^{h} [n(\vec{r})] d\vec{r} , \qquad (1.1)$$

where $f_{xc}^{h}[n(r)]$ is the exchange-correlation correction per particle for the homogeneous electron system at a density $\overline{n} = n(r)$. Thus we see that the properties of the homogeneous electron system are of basic importance in the study of inhomogeneous systems.

The exchange-correlation potential $V_{\rm xc}$ at any temperature⁷ is found to be identical with $\mu_{\rm xc}$ for uniform systems. The finite-temperature density-functional theory uses the grand canonical ensemble. For a given temperature T, volume V, and chemical potential μ , the thermodynamic potential Ω is a minimum for the correct density distribution n(r). In the homogeneous problem at density \overline{n} we have

$$\Omega(T, V, \mu) = \Omega_0 + \Omega_{\rm xc}(T, V, \mu) , \qquad (1.2)$$

where Ω_0 is the value for the system without interactions. Once $\Omega_{xc}(T, V, \mu)$ is obtained, and then only, can we eliminate μ in favor of the density \overline{n} via the parametric relation

$$N = \bar{n}V = -\left[\frac{\partial\Omega}{\partial\mu}\right]_{TV}.$$
(1.3)

If this inversion is not carried out and if $\Omega_{xc}(T, V, \mu)$ is simply treated as $\Omega_{\rm xc}(T, V, \bar{n})$, where μ has been eliminated using zero-order theory, incorrect thermodynamic results will be obtained. Thus Gupta and Rajagopal⁸ have reported tabulations of Ω_c for the ring sum, viz., Ω_r , which are negative in sign and incorrect in magnitude although, as is well known, it should in the classical limit lead to the positive Debye-Hückel value of Ω_r/V $=-P_r=e^2\bar{n}\lambda/6$, where λ is the Debye screening constant. From the detailed discussion of their calculations given by Gupta and Rajagopal⁹ [see Eqs. (104) and (105) of Ref. 9], it is clear that these authors¹⁰ treat $\Omega(T, V, \mu)$ as if it were $\Omega(T,\mu,\overline{n})$, without going through the relation (1.3). Panat and Amritkar¹¹ have unfortunately followed the work of Gupta and Rajagopal⁸ and reported tabulations of Ω_r which are really the Helmholtz free energy as in the case of Gupta and Rajagopal. In view of these confusions found in the recent literature, a reexamination of the problem is necessary.

In Sec. II we will briefly state the necessary theory for the calculation of F_{xc} and μ_{xc} , where the correlations will be treated via the random-phase approximation (RPA), also called the ring sum (or Montroll-Ward graphs). The passage from the grand canonical ensemble variable μ to the canonical ensemble variables \bar{n} , i.e., the density, will be restated. In Sec. III we present results for $f_{\rm xc} = F_{\rm xc}/\bar{n}$ and $\mu_{\rm xc}$ for a range of densities and temperatures in a convenient parametrized form. Here we make contact with some of the work of the East German group¹²⁻¹⁵ and the earlier work of Pokrant¹⁶ where alternative methods and approximations have been used. Finally, in Sec. IV we consider the effect of a responding ion background to linearly screen the electron-electron interactions and present results for these.

II. REVIEW OF THE THEORY

A detailed discussion of the theory, both from the point of view of the self-energy and the grand potential $\Omega(T, V, \mu)$ is given in Ref. 7. Only a brief review is given here for completeness and to define the notation.

We define

$$\Omega(T, V, \mu) = -T \ln Z$$

= $\Omega_0(T, V, \mu) + \Omega_{\rm xc}(T, V, \mu)$, (2.1)

where Z is the partition function and T the temperature in energy units. $\Omega_0(T, V, \mu)$ characterizes the noninteracting system. Its chemical potential $\mu = \mu_0$ is obtained from the equation (atomic units)

$$\bar{n} = 2 \sum n_k$$
, $n_k = 1/(1 + e^{\beta(\epsilon_k - \mu_0)})$, (2.2)

where

$$\overline{n} = N/V$$
, $\beta = 1/T$, $\epsilon_k = k^2/2$.

This implicit relation for μ_0 can be written as

$$\bar{n} = (\sqrt{2}/\pi^2)\beta^{-3/2}I_{1/2}(\beta\mu_0)$$
(2.3)

and then, using the resulting μ_0 , we have

$$\Omega_0 / V = -P = -2T \sum \ln(1 + e^{\beta(\mu_0 - \epsilon_k)})$$

= $(\sqrt{2}/\pi^2)\beta^{-5/2} \frac{2}{3} I_{3/2}(\beta\mu_0)$. (2.4)

Here $I_{\nu}(z)$ is the Fermi integral defined by

$$I_{\nu}(z) = \int_{0}^{\infty} \frac{dx \, x^{\nu}}{e^{x-z}+1} , \ \nu \ge -\frac{1}{2} .$$

For future use we also define the electron sphere radius r_s and the zero-temperature Fermi energy E_F (atomic units) as

$$r_s = \left[\frac{3}{4\pi\bar{n}}\right]^{1/3}, \ 2E_F = k_F^2 = \frac{1}{\alpha^2 r_s^2}, \ \alpha = \left[\frac{4}{9\pi}\right]^{1/3}.$$
(2.5)

Interacting system. When we switch on the interactions, the change in Ω , denoted by $\Omega_{xc}(T, V, \mu)$, can be calculated by diagrammatic perturbation theory. Ω_{xc} consists of Ω_x , which is the first-order term and is linear in the bare potential. Ω_c is the correlation term which by definition includes all other terms. If we consider the perturbation series as an expansion in powers of the screened Coulomb potential \tilde{u} , then the procedure used here may be regarded as a first-order calculation in the RPA- screened potential.

Thus we write

$$\Omega = \Omega_0(\mu) + \Omega_{\rm xc}^{(1)}(\mu) + (\cdots) , \qquad (2.6)$$

where the ellipsis represents higher order in \tilde{u} .

As seen from the work of Mermin (see Ref. 2), the exchange-correlation potential V_{xc} is the functional derivative of Ω_{xc} with respect to the density. Hence, and for other purposes, it is desirable to eliminate μ in favor of the density \overline{n} , thus passing from the grand canonical ensemble to the canonical ensemble. This is achieved by the relation

$$\bar{n} = -\frac{1}{V} \left[\frac{\partial \Omega}{\partial \mu} \right]_{T,V}$$
(2.7)

noting that the physical density \overline{n} is the density inclusive of corrections, viz.,

$$\bar{n}(\mu) = n^{0}(\mu) + n_{\rm xc}(\mu) , \qquad (2.8)$$

while the inversion is of the form

$$\mu(\bar{n}) = \mu^{0}(\bar{n}) + \mu_{\rm xc}(\bar{n}) . \qquad (2.9)$$

Now, given an Ω_{xc} the inversion may be performed numerically to obtain $\mu_{xc}(\bar{n})$, or alternatively, a linearized version of (2.9) may be considered, as in Ref. 7 [see Eqs. (4.16)–(4.18)]. The two procedures will *not* in general lead to equivalent results. We believe that the linearized inversion is more in keeping with our evaluation of Ω_{xc} to first order in the RPA-screened potential. Thus

$$\mu = \mu_0 + \mu_{\rm xc}^{(1)} \,. \tag{2.10}$$

 μ_0 is determined from a numerical inversion of

$$\bar{n} = \frac{\sqrt{2}}{\pi^2} \beta^{-3/2} I_{1/2}(\beta \mu_0) \; .$$

Then, expanding $\Omega(\mu)$ we have, as in Kohn and Luttinger¹⁷ (see also Stolzmann and Kraeft¹⁸),

$$\mu_{\rm xc}^{(1)} = -\frac{(\partial \Omega^{(1)} / \partial \mu)_{\mu = \mu_0}}{(\partial^2 \Omega_0 / \partial \mu^2)_{\mu = 0}}$$
$$= \frac{(\partial \Omega_{\rm xc}^{(1)} / \partial \mu)_{\mu = \mu_0}}{(\partial \overline{n} / \partial \mu)_{\mu = \mu_0}}.$$
(2.11)

These results lead to the form

$$\Omega_{\rm xc}(\bar{n},T) = \Omega_{\rm xc}(\mu_0,T) - V\bar{n}\mu_{\rm xc}^{(1)} + (\cdots),$$

where the ellipsis represents higher-order terms. From the thermodynamic relation

$$\Omega = -PV = F - \bar{n}V\mu$$

we have

$$F_{\rm xc}(n,T) = \Omega_{\rm xc}(\mu_0,T) + (\cdots),$$
 (2.12)

where the ellipsis represents higher terms,

$$\mu_{\rm xc}^{(1)}(n,T) = \frac{\partial \Omega_{\rm xc}(\mu_0,T)/\partial \mu_0}{\partial n(\mu_0,T)/\partial \mu_0} + \cdots, \qquad (2.13)$$

which is consistent with

$$\mu_{\rm xc}(n,T) = \frac{\delta F_{\rm xc}(n,T)}{\delta n}$$

Equations (2.12) and (2.13) are the equations used in this work. Equation (2.13) also defines the exchangecorrelation potential $V_{\rm xc} = \mu_{\rm xc}^{(1)}$ of DFT. The present analysis also shows that the Ω_r tabulated by Gupta and Rajagopal is really the ring-sum correction to the *Helmholtz free energy* F_r . Also, their $V_{\rm xc}$, which is also a calculation to first order in the screened potential, would prove to be the required $\mu_{\rm xc}$.

In the numerical calculation of Ω_{xc} it is more convenient to deal with the part linear in the bare potential, viz., Ω_x , separately from Ω_c which is just the ring sum in our approximation, as follows:

$$\Omega_{x}(\mu,T)/V = -\sum_{\vec{q}} \sum_{\vec{k}} u_{\vec{k}-\vec{q}} n_{q} n_{k}$$
$$= \frac{1}{2\pi^{3}\beta^{2}} \int_{-\infty}^{\eta} [I_{-1/2}(x)]^{2} dx , \qquad (2.14)$$

where

$$\eta = \beta \mu$$
, $u_{\vec{k} - \vec{q}} = \frac{1}{V} \frac{4\pi}{|\vec{k} - \vec{q}|^2}$

The ring-sum contribution is

$$\Omega_{c} \simeq \Omega_{r}(\mu, T) / V$$

$$= \sum_{n} \frac{1}{2\beta} \frac{1}{(2\pi)^{3}} \int d\vec{q} \{ \ln[1 - u_{q} \pi^{0}(qv_{n})] + u_{q} \pi^{0}(qv_{n}) \}, \qquad (2.15)$$

where $v_n = 2n\pi/\beta$ and $\pi^0(q, v_n)$ is the Lindhard function. For computational purposes we write this as

$$\Omega_r(\mu,T)/V = \frac{1}{\sqrt{2}\pi^2} \beta^{-5/2} \sum_n \int_0^\infty Q^2 dQ \{ \ln[1 - X_n(Q)] + X_n(Q) \},$$

(2.16)

$$X_n(Q) = -\frac{\sqrt{2\beta}}{\pi} \frac{1}{Q^3} F_n(Q,\eta) , \quad Q = q\sqrt{\beta/2}$$

with

$$F_n(Q,\eta) = \int_0^\infty \frac{x \, dx}{1 + e^{x^2 - \eta}} \ln \left[\frac{n^2 \pi^2 + Q^2 (Q/2 + x)^2}{n^2 \pi^2 + Q^2 (Q/2 - x)^2} \right]$$

These equations provide an approximation to the perturbation series for Ω to first order in the screened Coulomb potential \tilde{u} . The range of validity of such an approximation is unknown but we believe that *it captures* the most important part of the correlation corrections even for large r_s . To qualify this more carefully, we note from the study of Vosko, Wilk, and Nusair¹⁹ (their Table 5) that, for T=0, the maximum deviation of the RPA correlation energy from the Ceperley-Alder²⁰ Monte Carlo calculations is 13%, occurring at $r_s = 15$. At $r_s = 1$ and 100 they give deviations of 6% and 8%.

At very large r_s , one may consider the formation of a Wigner lattice.²¹ In the simplest approximation the electrons can be considered to define a set of harmonic oscillators with vibration frequency $\omega_p/\sqrt{3}$, where ω_p is the plasma frequency. Thus, at finite temperatures, this picture is unlikely to hold unless

$$T \ll \omega_n = (3/r_s)^2$$

Also, for large r_s since $E_F \propto 1/r_s^2$ we note that the electron system will rapidly approach the classical limit for which many results are available.²²

III. RESULTS FOR THE HOMOGENEOUS ELECTRON SYSTEM

In this section we present our results in the form of convenient analytic fits and compare them with existing calculations. It is convenient to parametrize $f_x = (F_x/N)$ and μ_x (i.e., V_x) separately from $f_c = (F_c/N)$ and μ_c (i.e., V_c), and then form f_{xc} and μ_{xc} . This is motivated by the fact that f_x and μ_x , being linear in the density, can be represented by a simple form independent of r_s by a suitable choice of units, and also because f_x and f_c were calculated by two separate formulas for Ω_x and Ω_c [Eqs. (2.14) and (2.16)] although their sum formally represents the first-order dynamically screened exchange graph free of logarithmic divergencies at $T \rightarrow 0$ limit.^{23,24}

The calculation of f_c and μ_c needs some care to ensure that the Q integration and the sum over n given in Eq. (2.16) have converged. For $n \le 20$ the sum was explicitly evaluated. For $21 \le n \le 100$ a Padé approximant to $\int Q^2 dQ [\ln(1-X_n)+X_n]$ based on the values for n < 21was used. For the range n > 100 an integral was performed with an approximation of the form $F_n \rightarrow 4I_{1/2}(\eta)Q^3/(Q^4 + aQ^2 + 4\omega^2)$.

A strong test of the quality of the numerical calculation can be obtained by noting that^{23,24} the logarithmic divergence in Ω_x for $T \rightarrow 0$ (i.e., $\eta \rightarrow \infty$) is exactly canceled by a similar term in Ω_c , so that Ω_{xc} is completely well behaved. Horowitz and Thieberger²³ give

$$\Omega_X/V = -\frac{1}{2\pi^3\beta^2} \left[2\eta^2 - \frac{\pi^2}{3} \ln\eta + \cdots + O(1/\eta^2) \right],$$

$$\eta \to \infty$$

where the ellipsis represents a constant.

Hence, by adding $\ln \eta / (6\pi\beta^2)$ to Ω_r / V we should find that the result is proportional to T^2 for small T. This was found to hold very accurately for sufficiently large η , (e.g., $\eta > 10$ for $\mu = 0.5$ a.u.) in all the cases examined. Calculations were carried out for $r_s = 0.1$ to $r_s = 5$ and the results have been parametrized as follows.

A. Exchange contributions

We give the zero-temperature and high-temperature limits, viz.,

$$\mu_x(0) = -\frac{k_F}{\pi} = -0.6109/r_s \tag{3.1}$$

in a.u. Using the letter h to imply the high-temperature limit,

$$\mu_x(h) = \mu_x(0)(2/3t)$$
,

where $t = T/E_F$. The following forms were found to reproduce the numerical data for $0.1 \le T/E_F \le 12$ quite accurately:

 $f_x(r_s t)/\mu_x(0)$

$$=\frac{0.75+3.04^{3}\,63t^{2}-0.092\,270t^{3}+1.703\,50t^{4}}{1+8.310\,51t^{2}+5.1105t^{4}}$$
$$\times \tanh(1/t)$$
(3.2)

and

$$\mu_{x}(r_{s}t)/\mu_{x}(0) = \frac{1.0+2.834\,31t^{2}-0.215\,120t^{3}+5.275\,86t^{4}}{1+3.943\,09t^{2}+7.913\,79t^{4}} \times \tanh(1/t) .$$
(3.3)

Note that we have used $\mu_x(0)$ as the unit of energy in both (3.2) and (3.3). Although $\mu_x(r_s t)$ can be obtained from (3.2) by differentiation, the independent parametrization given in (3.3) is more convenient.

Note that these parametrizations also provide a representation for Ω_x and the pressure $p_x(=-\Omega_x/V)$ via the standard thermodynamic relations

$$-p_x/\bar{n} = f_x - \mu_x . \tag{3.4}$$

The analytic forms given by Eqs. (3.2) and (3.3) deviate from the original tables by not more than 0.5%throughout the range of t considered (see Table I).

B. Ring contributions

At the zero-temperature limit, $f_c(r_s, 0)$ becomes identical with the energy per particle, viz., $\epsilon_c(r_s, 0)$. Vosko,

Wilk, and Nusair¹⁹ have given parametrization for $\mu_c(r_s, 0)$ and $\epsilon_c(r_s, 0)$ for r_s up to 100. Thus

 $\epsilon_c(r_s,0)$

$$= A \left[\ln \frac{x^2}{X(x)} + \frac{2b}{Q} \tan^{-1} \frac{1}{2x+b} - \frac{bx_0}{X(x_0)} \frac{\ln(x-x_0)^2}{X(x)} + \frac{2(b+2x_0)}{Q} \tan^{-1} \frac{Q}{2x+G} \right],$$

where

$$x = \sqrt{r_s}$$
, $X(x) = x^2 + bx + c$, $Q = (4c - b)^{1/2}$ (3.5)

with

$$x_0 = -0.409\,286$$
, $b = 13.0720$,
 $c = 42.7198$, $A = 0.031\,907$

in atomic units for RPA. The case including correlation beyond RPA is given as $x_0 = -0.10498$, b = 3.72744, c = 12.9352, with the same value of A as before. The chemical potential is obtained from

$$\mu_c = \epsilon_c - \frac{A}{3} \frac{1 + b_1 x}{1 + b_1 x + b_2 x^2 + b_3 x^3} , \qquad (3.6)$$

where, for RPA, $b_1 = 2.749273$, $b_2 = 0.771037$, and $b_3 = 0.057193$. However, for $0 < r_s < 6$ we can use the simpler form (for several parametrizations see MacDonald, Dharma-wardana, and Geldart²⁵)

$$\mu_{c}(r_{s},0) = C \ln(1+1/y) ,$$

$$f_{c}(r_{s},0) = C \left[(1+y^{3}) \ln(1+1/y) + \frac{y}{2} - y^{2} - \frac{1}{3} \right]$$
(3.7)

with

$$C = 0.02545$$
, $y = r_s/19$

for the correlation corrections in atomic units.

TABLE I. $f_x(t)$ and $\mu_x(t)$ are the first-order exchange contributions to the free energy per particle and the chemical potential. $t=T/E_F$, $\mu_x(0)=0.610.89/r_s$ (a.u.). The ring-sum contributions to $f_c(r_s t)$ and $\mu_s(r_s t)$ at $r_s=1$ a.u. are also given, together with the values calculated from the analytic fitting formulas.

$\overline{t = T/E_F}$	0.1100	0.4973	0.9887	1.501	2.361	4.462	8.590	11.96
$F_{u}(t)/\mu_{u}(0)$	0.7106	0 4587	0 2873	0 2031	0 1349	0.0733	0.0385	0 0278
Eq. (3.2)	0.7145	0.4571	0.2880	0.2034	0.1347	0.0732	0.0385	0.0277
$\mu_x(t)/\mu_x(0)$	0.9899	0.7812	0.5331	0.3888	0.2633	0.1454	0.0769	0.0555
Eq. (3.3)	0.9866	0.7835	0.5310	0.3891	0.2646	0.1459	0.0769	0.0555
$f_c(t)/\mu_x(0)$	0.1663	0.3474	0.4042	0.3984	0.3649	0.2968	0.2267	0.1955
Eqs. (3.9) and (3.10)	0.1657	0.3482	∖0.405 9	0.3979	0.3658	0.2980	0.2264	0.1 947
$\mu_c(t)/\mu_x(0)$	0.1524	0.3272	0.4685	0.5060	0.4952	0.4236	0.3325	0.2888
Eqs. (3.9)— (3.11)	0.1511	0.3248	0.4688	0.5056	0.4955	0.4237	0.3303	0.2863

<u>30</u>

The classical-limit results at high temperatures (DeWitt,²² also Ref. 12) have the form (atomic units)

$$f_{c} = -\frac{1}{3}\lambda_{D} + \frac{\sqrt{2\pi}}{32}\lambda_{D}^{2}T^{-1/2} + \cdots ,$$

$$\mu_{c} = -\frac{1}{2}\lambda_{D} + \frac{\sqrt{2\pi}}{16}\lambda_{D}^{2}T^{-1/2} + \cdots ,$$
(3.8)

where

$$\lambda_{\rm D} = (4\pi \overline{n}/T)^{1/2}$$

Hence in the Debye-Hückel limit,

.

$$\mu_{\rm DH} = -0.638\,168(tr_s)^{-1/2}$$

in a.u.

The numerical results for $0.1 \le r_s < 6$ and $0.1 \le t \le 12$ were found to be accurately representable by the following form (atomic units):

$$\phi_c(r_s t) = \phi_c(r_s, 0)(1 + c_1 t + c_2 t^{1/4})e^{-c_3/t} + \phi_c(r_s, h)e^{-c_4/t}, \qquad (3.9)$$

· · · - c · /t

where, when $\phi_c(r_s t) = f_c(r_s, t)$ we have $f_c(r_s, 0)$ as given by Eqs. (3.7) or (3.5) and

$$f_c(r_s,h) = -0.425\,437(t/r_s)^{1/2} \tanh(1/t) \,. \tag{3.10}$$

Here (r_s, h) implies the high-temperature representation

$$c_{1} = \frac{10.900}{1+0.00472r_{s}} ,$$

$$c_{2} = \frac{39.5422 - 52.2381r_{s}^{1/4} + 8.48554r_{s}^{3/4}}{1+17.0999r_{s}^{1/4}} ,$$

$$c_{3} = \frac{3.88860}{1+0.133620r_{s}^{1/2}} ,$$

$$c_{4} = 0.122285 + 0.254281r_{s}^{1/2} .$$

When $\phi_c(r_s,t) = \mu_c(r_s,t)$ we have $\mu_c(r_s,0)$ as given by (3.7) and (3.6) and

$$\mu_c(r_s,h) = -0.638\,168(t/r_s)^{1/2} \tanh(1/t) \tag{3.11}$$

and

$$c_{1} = \frac{9.55432}{1+0.06666r_{s}},$$

$$c_{2} = \frac{3.57912 - 5.99065r_{s}^{1/4} + 1.29722r_{s}^{3/4}}{1+1.61126r_{s}^{1/4}},$$

$$c_{3} = \frac{4.80217}{1+0.423387r_{s}^{1/2}},$$

$$c_{4} = 0.29335 + 0.322565\sqrt{r_{s}}.$$

Illustrative results from these fitting formulas are given for the case $r_s = 1$ in Table I. The fitting formulas are sufficiently accurate for most calculations, but the original tabulations are available from the authors on request.

Richert and Ebeling¹⁵ have recently proposed a Padé approximation form for f_{xc} and μ_{xc} by making use of the

analytic forms of $f_{\rm xc}$ and $\mu_{\rm xc}$ at the high-T and low-T limits. Their form has not been optimized by fitting to numerical calculations but is supported by having the correct limiting behaviors at high and low T. However, numerical tests at $r_s = 0.5$ using their form for RPA gave errors in excess of 25% for several temperatures.

It is of interest to compare our results with those of Pokrant¹⁶ who has used completely different methods and given tabulations ($r_s = 0.5 - 3.39$) for p_{xc}/\bar{n} and f_{xc} , and hence $\mu_{xc} = f_{xc} + p_{xc}/\bar{n}$. Pokrant proceeds by evaluating the Slater sum using a finite temperature variational principle, together with a number of approximations typical of the statistical theory of fluids. His results for T = 0 are significantly different from those favored by Vosko *et al.* in their reevaluation of the available data inclusive of correlations beyond RPA. Figure 1 provides a comparison of our RPA data for μ_x and those of Pokrant which is presumed to contain correlation corrections beyond RPA.

IV. EFFECT OF A RESPONDING ION BACKGROUND

In this section we examine the effect of ion-screening effects on $V_{\rm xc}$ ($=\mu_{\rm xc}$) and $f_{\rm xc}$ as this is of importance in density-functional calculations¹ of two-component (i.e., ions and electrons) systems. In this case we have to consider two correlation potentials, viz., μ_c^e and μ_c^i , where the superscripts e and i denote electrons and ions.

Instead of (2.6) and (2.11) we have

$$\Omega(\mu^{e},\mu^{i},T) = \Omega_{0}^{e}(\mu_{e},T) + \Omega_{0}^{i}(\mu^{i},T) + \Omega_{x}(\mu^{e},T) + \Omega_{c}(\mu^{e},\mu^{i},T)$$
(4.1)

and writing s = i or e we have

$$n_s = -\frac{\partial \Omega_0^s(\mu_0^s, T)}{\partial \mu_0^s} = -\frac{\partial \Omega(\mu^e, \mu^i, T)}{\partial \mu_0^s} , \qquad (4.2)$$

$$\mu_c^s = \frac{\partial \Omega_c(\mu_0^s, \mu_0^s, T)}{\partial \mu_0^s} \Big/ \frac{\partial n_s}{\partial \mu_0^s} .$$
(4.3)

FIG. 1. Plots of $\mu_{xc}(r_s,T)/\mu_x(0)$ for $r_s=0.5$, 3.39, and 5.0. The triangles are from Pokrant's variational calculations (Ref. 16).

				(a)		(b)			
η^{e}	T/E_F	rs	$-F_c/\overline{n}$	$-\mu_c^e$	$-\mu_c^i$	$-F_c/\overline{n}$	$-\mu_c^e$	$-\mu_c^i$	
-4.0	11.995	5.124	0.1459	0.1037	0.1108	0.1460	0.1037	0.1110	
-3.0	6.183	3.685	0.2308	0.1579	0.1776	0.2310	0.1579	0.1780	
-2.0	3.235	2.665	0.3542	0.2255	0.2792	0.3548	0.2256	0.2803	
-1.0	1.740	1.955	0.5165	0.2892	0.4252	0.5178	0.2892	0.4279	
0.0	0.989	1.474	0.7012	0.3199	0.6182	0.7043	0.3200	0.6244	
1.0	0.611	1.158	0.8843	0.3091	0.8470	0.8908	0.3091	0.8598	
2.0	0.414	0.953	1.0548	0.2794	1.0927	1.0663	0.2794	1.1155	
4.0	0.237	0.722	1.3673	0.2332	1.5805	1.3936	0.2333	1.6323	
7.0	0.140	0.555	1.7962	0.2085	2.2487	1.8529	0.2087	2.3605	
10.0	0.099	0.467	2.1904	0.2012	2.8461	2.2847	0.2014	3.0318	

TABLE II. Comparison of calculations for a hydrogen plasma (z=1,M=1848) at T=22.8 eV. Ionic contributions to the ring sum are calculated using (a) the full Dawson function $D(Q/2\sqrt{M})$, (b) the small-Q limit Q/\sqrt{M} .

In this paper we evaluate $\Omega_c(\mu^e, \mu^i, T)$ in the ring-sum (RPA) approximation. The new value of V_c^e (i.e., μ_c^e) will depend on the electron density \bar{n} and the ion density $\bar{\rho} = \bar{n}/z$, where z is the effective positive charge on the ions. The ion-correlation potential $\mu_c^i(\bar{n}, \bar{\rho}, T)$ evaluated in this manner would NOT be as good as the procedure based on the hypernetted-chain (HNC) integral equation given in Ref. 1 where nonlinear effects are also taken into account. However, $\mu_c^e(\bar{n}, \bar{\rho}, T)$, i.e., the correlation potential for electrons, will be superior to the form used in Ref. 1 since $\mu_c^e(\bar{n}, \bar{\rho}, T)$ includes (in linear response) the effects of the term denoted by $F_c^{ei}(n, \rho)$ which was neglected at that time.

Since the ions are classical at all temperatures of interest and much heavier than electrons, the RPA-response function $\pi^i(q, \nu_n)$ contributes only for the n = 0 term. We have

$$\pi^{i}(q,\nu_{0}) = -\frac{1}{\pi^{3/2}} e^{\beta\mu^{i}} \frac{M^{2}}{\beta q} D\left[\frac{q}{2}\sqrt{\beta/2M}\right], \qquad (4.4)$$

where *M* is the ion mass and D(x) is the Dawson function defined so as to have the limit $D(x \rightarrow 0)=2x$. Thus, when linear ion-screening effects are included in RPA in Eq. (2.16), we replace the n = 0 term by

$$X_{0}(Q) = -\frac{\sqrt{2\beta}}{\pi} \frac{1}{Q^{3}} \left[F_{0}(Q, \eta^{e}) + \sqrt{\pi}M^{2}z^{2}e^{\eta^{i}}D\left[\frac{Q}{2\sqrt{M}}\right] \right], \quad (4.5)$$
$$e^{\eta^{i}} = \left[\frac{\pi\beta}{M}\right]^{3/2} \sqrt{2}(\overline{n}/z), \quad \eta^{i} = \beta\mu^{i}.$$

The nonzero-frequency contributions $(n \neq 0)$ come only from the electrons. The small-Q limit of $D(Q/2\sqrt{M})$ corresponds to the Debye-Hückel screening function. In Table II we present results for a typical temperature (T=22.8 eV) of a hydrogen plasma (z=1, M=1848) to examine the effect of Q dispersion in the ion-response function. Q dispersion is found to be relatively unimportant for μ_e^e , but it has a significant effect on μ_c^i . To study the effect of softening of the ion background we define the ion-response factor $\zeta = (\lambda_D^i / \lambda_D^e)^2$, where λ_D is the corresponding Debye screening constant. The rigid ion background corresponds to $\zeta = 0$, while a responding proton gas corresponds to $\zeta = 1$. The results of this calculation which exploits the small-Q limit of the Dawson function are shown in Fig. 2.

In Table III we give results for f_c , μ_c^e , and μ_c^i for a hydrogen plasma at $r_s = 1$ with the ion-response factor $\zeta = 0.5$ and 1.0, together with f_c and μ_c^e for the system with a rigid-ionic background ($\zeta = 0$). Figure 3 displays μ_c^e for other values of r_s and as a function of temperature. Note that the effect of ion correlations is more important at small r_s and near the region where μ changes sign $(T/E_F \approx 1.0)$.

We have not attempted to parametrize $\mu_c^e(\bar{n}, \zeta, T)$ or equivalently the $\mu_c^e(\bar{n}, \bar{\rho}, T)$ data as was done for the case of the uniform background. Tabulations are available from the authors if needed. However, a convenient ap-

FIG. 2. Variation of μ_e^e (a.u.) for an electron-ion plasma at T=22.8 eV for different values of the ion-response factor $\zeta = (\lambda_D^i / \lambda_D^e)^2$, calculated using the small-Q limit of the Dawson function. Here $\eta_e = \beta \mu_e^o$.

TABLE III. Correlation correction f_c , μ_c^e , and μ_c^i in atomic units for a hydrogen plasma at $r_s = 1$ with the ion-response factor $\zeta = 0$, 0.5, and 1, with $\zeta = (\lambda_{\rm DH}^i / \lambda_{\rm DH}^e)^2$. The case $\zeta = 0$ corresponds to a rigid-ion background for which $\mu_c^i \equiv 0$.

		and the second se						
	$-f_c$			$-\mu_c^e$			$-\mu_c^i$	
T/E_F	0.0	0.5	1.0	0.0	0.5	1.0	0.5	1.0
0.110	0.1016	0.6078	1.4007	0.0931	0.1279	0.1438	0.3363	1.8012
0.4973	0.2122	0.5481	0.9965	0.1999	0.2613	0.3032	0.1985	0.9931
0.9887	0.2469	0.5246	0.8746	0.2862	0.3561	0.4086	0.1582	0.7639
1.5009	0.2434	0.4860	0.7852	0.3091	0.3797	0.4346	0.1364	0.6486
2.3607	0.2229	0.4285	0.6779	0.3025	0.3696	0.4231	0.1144	0.5381
3.2348	0.2030	0.3839	0.6019	0.2838	0.3463	0.3969	0.1003	0.4692
4.4623	0.1813	0.3392	0.5283	0.2588	0.3156	0.3621	0.0872	0.4064
6.1826	0.1595	0.2964	0.4596	0.2312	0.2817	0.3234	0.0754	0.3501
8.5899	0.1385	0.2564	0.3965	0.2031	0.2475	0.2843	0.0648	0.3003
11.955	0.1194	0.2205	0.3406	0.1764	0.2153	0.2476	0.0556	0.2572

proximate analytic form which describes the effect of the responding ion background on μ_c^e can be obtained by exploiting the fact that (i) only the n=0 term in the frequency sum for Ω_r is involved, (ii) the Q dispersion in the Dawson function is not too important for μ_c^e .

We separate out the n=0 term in the ring sum and write

$$\Omega_r(\mu^e, \mu^i, T) = \Omega_r(n \neq 0) + \Omega_r(n = 0)$$

= $\Omega_r(n \neq 0) + \Omega_r^e(n = 0)$
+ $[\Omega_r(n = 0) - \Omega_r^e(n = 0)]$. (4.6)

Here $\Omega_r^e(n=0)$ is the static term in the electron-gas ringsum calculation with the rigid uniform ionic background. Hence we rewrite (4.6) as

$$\Omega_r(\mu^e,\mu^i,T) = \Omega_r^e(\mu^e,T) + \Delta\Omega_r(n=0) , \qquad (4.7)$$

where $\Omega_r^e(\mu^e, T)$ is the *total* electron-gas ring sum while $\Delta \Omega_r(n=0)$ is the correction to the n=0 term arising

FIG. 3. V_c^{ϵ} (i.e., μ_c^{ϵ}) for $\zeta = 1$ (solid curves) at $r_s = 0.5$ and 5.0. The data for a rigid-ion background $\zeta = 0$ are also given (dashed curves) for $r_s = 0.5$ and 5.0 (atomic units).

from the presence of ion screening. We evaluate $\Delta\Omega_r(n=0)$ in the $q \rightarrow 0$ approximation as follows:

$$\Delta\Omega_{r}(n=0) = \Omega_{r}(n=0,\mu^{e},\mu^{i}) - \Omega_{r}^{e}(n=0,\mu^{e}) , \qquad (4.8)$$

$$\Omega_{r}(n=0,\mu^{e},\mu^{i}) \simeq \frac{T}{4\pi^{2}} \int_{0}^{\infty} \left[\ln \left[1 + \frac{\lambda_{T}^{2}}{q^{2}} \right] - \frac{\lambda_{T}^{2}}{q^{2}} \right] q^{2} dq , \qquad (4.9)$$

$$\Omega_{r}^{e}(n=0,\mu^{e}) \simeq \frac{T}{4\pi^{2}} \int_{0}^{\infty} \left[\ln \left[1 + \frac{\lambda_{e}^{2}}{q^{2}} \right] - \frac{\lambda_{e}^{2}}{q^{2}} \right] q^{2} dq . \qquad (4.9)$$

Here λ_T is the total (electron plus ion) screening constant, while λ_e is the screening constant for the electrons only.

Doing the integrations in (4.8) and eliminating the μ variable in favor of the density, we have, in an obvious notation,

$$\Delta F_c(n=0,\overline{n},\overline{\rho},T) = -\frac{T}{12\pi} (\lambda_T^3 - \lambda_e^3) , \qquad (4.10)$$

where

$$\lambda_{e}^{2} = \frac{2}{\pi} \sqrt{2T} I_{-1/2}(\beta \mu_{0}^{e})$$

and

$$\lambda_T^2 = 4\pi \bar{n}\beta z + \lambda_d^2$$

since

$$\overline{\rho} = \overline{n}/z$$

Hence

$$\Delta \mu_c^e(n=0,\bar{n},\bar{\rho},T) = \frac{\partial}{\partial \bar{n}} \Delta F_c(n=0,\bar{n},\bar{\rho})$$
$$= \frac{T}{4\pi} (\lambda_T^2 \lambda_T' - \lambda_e^2 \lambda_e') . \qquad (4.11)$$

Equation (4.10) can be easily evaluated since it involves only standard Fermi integrals and a derivative with respect to the density \bar{n} [denoted by primes on λ in Eq. (4.11)]. Once $\Delta \mu_c^e$ is calculated, the total $\mu_c^e(\bar{n},\bar{\rho},T)$ can be written as

$$\mu_{c}^{e}(\bar{n},\bar{\rho},T) = \mu_{c}^{e}(\bar{n},T) + \Delta \mu_{c}^{e}(n=0,\bar{n},\bar{\rho},T) . \qquad (4.12)$$

 $\mu_c^e(\bar{n},T)$ needed here may be calculated from the parametrization given in Eq. (3.10). Hence $\mu_c^e(\bar{n},\zeta,T)$ may be approximately evaluated by this procedure which is computationally quite straightforward. The same calculation can be adopted for f_c via Eq. (4.10).

V. CONCLUSIONS

We have presented convenient and adequately accurate parametrizations of the exchange and correlation corrections to the free energy and the chemical potential needed in density-functional calculations of strongly coupled electron-ion systems at arbitrary degeneracies. In addition to the detailed calculation, a simple method of calculating the properties of electron-ion systems by an approximation to the zero-frequency term in the expression for the ring sum is also presented. Although we have presented correlation corrections to the ion chemical potential (μ_c^i) , it is not recommended that they be used in strong coupling situations since the procedure given in Ref. 1, based on the HNC equation, is superior to the present (linearresponse) approach. By contrast, $\mu_c^e(\bar{n},\bar{\rho},T)$ presented here will be very useful in future DFT calculations of systems with electrons and ions.

ACKNOWLEDGMENTS

The authors are especially thankful to Dr. J.-L. Pélissier of Commissariat à l'Energie Atomique-Limeil for many useful discussions and comments. Also, one of the authors (M.W.C.D.) is thankful to Dr. Carl Moser, Directeur of Centre Européen de Calcul Atomique et Moléculaire (CECAM), Orsay, France, for his support during a visit to CECAM when this work was initiated.

- ¹M. S. C. Dharma-wardana and F. Perrot, Phys. Rev. A 26, 2096 (1982); F. Perrot and M. W. C. Dharma-wardana, *ibid*. 29, 1378 (1984).
- ²For a recent review see W. Kohn and P. Vashishta, in *Theory* of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N. H. March (Plenum, New York, 1983), p. 79.
- ³R. M. More, Phys. Rev. A **19**, 1234 (1979).
- ⁴F. Perrot, Phys. Rev. A 20, 586 (1979).
- ⁵D. Liberman, J. Quant. Spectrosc. Radiat. Transfer **27**, 335 (1982) and references therein.
- ⁶B. F. Rozsnyai, Phys. Rev. A 5, 1137 (1972).
- ⁷M. W. C. Dharma-wardana and R. Taylor, J. Phys. C 14, 629 (1981).
- ⁸U. Gupta and R. K. Rajagopal, Phys. Rev. A 22, 2792 (1980).
- ⁹U. Gupta and R. K. Rajagopal, Phys. Rep. 87, 181 (1982).
- ¹⁰U. Gupta, private communication (unpublished); R. K. Rajapogal, private communication (unpublished). These authors' incorrect remarks on p. 301 of Ref. 10, Eq. (108) can also be understood within this context.
- ¹¹P. V. Panat and R. E. Amritkar, Phys. Rev. A 28, 1859 (1983).
- ¹²W. Ebeling, W.-D. Kraeft, and D. Kremp, *Theory of Bound* States and Ionization Equilibria in Plasmas and Solids, Ergeb-

nisse der Plasmaphysik und der Gaselektronik, Band V (Akademie, Berlin, 1976).

- ¹³W.-D. Kraeft, and W. Stolzmann, Physica A 97, 306 (1979).
- ¹⁴W. Ebeling and W. Richert, Ann. Phys. (Leipzig) **39**, 362 (1982).
- ¹⁵W. Richert and W. Ebeling, Phys. Status Solidi B 121, 633 (1984).
- ¹⁶M. A. Pokrant, Phys. Rev. A 16, 413 (1977).
- ¹⁷W. Kohn and M. Luttinger, Phys. Rev. 118, 41 (1960).
- ¹⁸W. Stolzmann and W.-D. Kraeft, Ann. Phys. (Leipzig) 36, 388 (1979).
- ¹⁹S. H. Voska, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
- ²⁰D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. **45**, 566 (1980); also D. M. Ceperley, Phys. Rev. B **18**, 3126 (1978).
- ²¹D. Pines, *Elementary Excitations in Solids* (Benjamin, New York, 1963), p. 91.
- ²²H. E. DeWitt, J. Math. Phys. 7, 616 (1966); also Ref. 12.
- ²³B. Horovitz and R. Thieberger, Physica 71, 99 (1974).
- ²⁴J.-L. Pélissier, Physica A 105, 607 (1981).
- ²⁵A. H. MacDonald, M. W. C. Dharma-wardana, and D. J. W. Geldart, J. Phys. F 10, 1719 (1980).